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Small vibrations and waves of an ideal fluid gas (a liquid or gas) are considered in the quadratic approximation. Actual values 
of the momentum density and the pressure and also their averaged values are obtained in a number of specific characteristic 
problems. It is shown that the momentum of an isolated wave with a mean density equal to the density of the unperturbed medium, 
and the radiation pressure are due to non-linearity of the system of equations, and that this wave has no momentum if its profile 
remains unchanged during its motion. The latter assertion is also true for finite-amplitude waves. © 1999 Elsevier Science Ltd. 
All rights reserved. 

The action of waves in liquids or gases when reflected from an obstacle, and also the pressure on the 
wall of a closed volume when these media vibrate is usually explained by the change in the momentum 
of the perturbations when interaction occurs with the obstacles. The literature contains assertions both 
regarding the necessary presence of momentum in the waves [1-3], and that there is no such a momentum 
[4, 5]. Below, in relation to this problem, we investigate the solutions of the equations of hydrodynamics, 
obtained up to second-order infinitesimals in the amplitude of the perturbations of the parameters of 
the medium in specific initial-boundary-value problems. Some well-known problem are solved here in 
a somewhat changed formulation and the results are presented to complete the picture. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider the one-dimensional motion of an ideal fluid (a liquid or gas) in a tube with unit area of cross- 
section when there are no external forces. The equation of continuity and Euler's equation have the form 

pt +(pv)x : 0, put +povx +p~ =0 (1.1) 

where ~ is the flow velocity at a given point of the medium, p is the density and p is the pressure. 
Multiplying the first equation by ~ and adding it to the second, we obtain 

pt+.~ =0, jt +(jZp -z + P)x =0 (1.2) 

wherej = p~ is the momentum density (the momentum). These equations are simpler than the initial 
system and more convenient, as will be seen below. 

We will consider a wave packet in an unbounded medium, its interaction with a reflecting wall, the 
generation and development of wave motions of a gas when a piston vibrates, and other problems. Since 
we are interested in a solution up to second-order infinitesimals in the amplitude of the perturbations 
of the parameters of the medium, we will seek p andj in the form 

p=p0 + p ' + p " +  .... j = j ' + j " + . . .  

where the number of primes corresponds to the order of the infinitesimal [6, 7]. Assuming the pressure 
to be a single-valued function of the density, we will write Poisson's equation 

p : p 0  po (1.3) 
P0 

where 7 is the adiabatic exponent and c~ = (OP/OP)P=Po is the square of the velocity of sound. 
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We will write the equations of the first approximation and the obvious solution 

, . ,  2 , 
Pt + J'x = O, J, + cop x = 0 

p' I P0 = fl (~ = x + Co t) + A01 = x - Cot) (1.4) 

J" / Po = -co f l  (~) + cof2 (n) 

Here  f l  and f2 are arbitrary functions characterizing waves travelling to the left and the fight, respectively, 
with constant velocity Co without any change in shape, the modulus of these functions being much less 
than unity. 

We will also consider the case when T < O, which is physically inadmissible, since it leads to a pressure 
drop when the density increases. In this case we can assume (for 7 = -1) [1] 

P=  P0 + c2po( 1 -PoP -l) (1.5) 

The results obtained below will then be true for any sign of T. 

2. A T R A V E L L I N G  WAVE IN A M E D I U M  W I T H O U T  B O U N D A R I E S  

The momentum of a wave packet travelling to the left and described by the continuous function 
f (x  + Cot), specified in the range 0 <- x + Co t <~ l and equal to zero at the ends of this range and outside 
it, is defined as a whole in accordance with solution (1.4) by a deviation of the density from the 
equilibrium value. In particular, if at the instant of time t 1 the wave packet lies between xl and x2 = xl 
+ I and the excess mass of the packet is positive, i.e. 

p0I]" ~ f ( , , t , ~  > o 

then its momentum is 

~ j ' (x , t~)dr  < 0 

i.e. is in the direction of the wave motion. If there is a mass deficiency, the momentum will be greater 
than zero, i.e. it will be in the opposite direction to the wave motion, similar conclusions also easily 
follow for a wave travelling to the right. Thus, in the first approximation the motion of a wave packet 
which possesses momentum is accompanied by the mass transfer in a direction that is not necessarily 
the same as its direction of propagation. 

The equations of the second approximation for a wave packet travelling to the left have the 
form 

H . 1 1  
p, + J~ - 0 

.... 2 , , _  + l  ( y _ l ) c ~ p , 2 ) x = _ e c ~ P o ( f 2 ( ~ ) )  x jt + c6px _ _po I (j,2 

= (T + 1)/2 

(2.1) 

We will give the solution corresponding to the initial conditions for the second approximation, which 
is only non-zero when 0 < x < l 

t ,  0 P ( x , O ) f p 2 ( x ) ,  j " ( x , O ) = j O ( x )  

_ ~ o l  o c-I J2tq)'°'~" + c-!12(i]).o.--.] P " ( x , t ) = t P + ( X , t ) + 2 [ P 2 ( - ) + P . ( 1 1 ) -  o 0 

, ,  1 0 j (x. t) = q,_ (x. 0 + ~ [A (P,) + jo(n)_ CoO °(P,) + cop °(n)] 

~± = 4Po[-12(P,) + 2Cot[fl(~)]~ + f2(~)]  

(2.2) 
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The solutions are obtained for an arbitrary continuous function f (x ,  t), which possesses continuous 
derivatives with respect t ox  and t, by using the characteristics ~ = x + cot, 1"1 = x - cot and by converting 
Eqs (2.1) to these variables, and t < t, is the time the discontinuity forms. 

It follows from the solutions that if at the initial instant, when p°2(x) = O, j~(x) = 0, the wave 
packet, which is moving to the left, is represented by the function f(x), then, as time passes it disintegrates 
into a group of  waves travelling to the left and with a changing profile (the first two terms), and a wave 
travelling to the fight (the third term). If the excess mass and the momentum of the initial packet, defined 
by the integral 

J~ f(x),a 
are zero, the two groups of waves which are formed each have separately an excess (or a deficiency) 
of mass and momentum, defined by the integral off2(x __+ cot), with these quantities being zero for the 
whole wave process. This is a manifestation of  the laws of conservation of mass and momentum of the 
whole wave process. 

Note that, in contrast, a travelling wave does not arise if 

~ C o P o f 2  (x )  + c0P~(X ) +-jO(x) = 0 (2.3) 

Taking this into account and eliminatingj°(x), we will have 

= Po + p o f t D  + ~ poCo~f 2 (~)h  + o ° (~) P 
(2.4) 

j ffi co(Po - p) - ~- coPof2(~) 
z 

We will give one more form of  the formulae when 

p°(x) ffi - ~ poIxf 2 (x)h 

We have 

P = Po + P o f ( D -  ~ P o [ 4  2 (D]~ 

J = -CoPof(~) + ~ CoPoX[f 2 (~)]x 
(2.5) 

Solutions (2.4) and (2.5) differ in the second approximation, which, in the first case, contains a term 
- t, and in the second - x, but the behaviour of the solutions is similar, since when the wave moves 
x - cot. It follows from (2.4) and (2.5) that 

]]? (p'+ p")dx and ]]7 jdx 

cannot vanish simultaneously. These formulae do not give as simple a relation between the momentum 
and the density as in the first approximation. 

The solutions for a wave travelling to the right can be obtained by changing the sign of Co. 
From these formulae we obtain, fast, a well-known result: a wave cannot propagate without distortions 

(due to the term proportional to t orx), apart from the case when 7 = -1. Second, a non-decaying wave 
has, of necessity, either momentum, or an excess (or a deficiency) of mass, or both. Thus, when 
p~(x) = epaf2(x)/2 the wave packet does not have momentum when there is a mass deficiency. 

We will now consider another not unimportant fact which follows from (2.4). When 

p°(x)  = o, I~ y(x)d~ = o 

the packet possesses zero excess mass, since 

lo t [f2(X)]xdx = 0  

by virtue of  the fact that f(0) = f(1) = 0 and, in addition, has a non-zero momentum, equal to 
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I , ,  E / 
I J (x )dx=-~CoPol  f2(x)dx (2.6) 
0 0 

The following question arises: how can a wave packet without excess mass transport it, since there 
is a non-zero momentum? We will solve this paradox. We will calculate the momentum of the medium 
within the limits xl, x2 in which the wave packet moves from right to left with a leading wave front at 
the point x = --Co(t) and with a rear wave front at the pointx = --Co(t ) so thatXl ~< --cot, l -  cot ~< x2. The 
centre of mass xc of this part of the medium is obtained from the formula 

x2 1 2  t 2 ! 
Po(X2-Xl)Xc = I xp(x , t )dx=-~po(x2-xX)+Pol  zf2(z)  d z -  CoPot f2(z)  dz 

x I 0 

(we have specified the density from (2.4) with p0 = 0). 
Hence it follows that the presence of a wave with zero mean leads, in the first approximation, merely 

to a constant displacement of the centre of mass of the part of the medium considered, while the velocity 
of the centre of mass is given by the second approximation as a whole and is due to the change in the 
wave profile. We have 

E I 

po/~ c = _ 2" cOPO ~ f2 (z)dz 
0 

which is identical with the expression for the momentum (2.6). The result obtained can also be extended 
to a wave of finite amplitude. 

Hence, despite the fact that there is no excess mass, the momentum of the packet is also related to 
the transfer of mass due to redistribution of the density relative to the packet, i.e. due to a change in 
its profile. The momentum is proportional to y + 1, the denser parts possess greater velocity than the 
less dense parts [8], and hence its direction coincides with the direction of the packet propagation if 
7 > -1. The fact that the directions of the momentum and the propagation velocity of the wave packet 
are not the same when there is a mass deficiency and particularly when momentum is present in the 
case of zero excess mass of the packet, changes the relation between the momentum and the 
velocity considerably in discrete systems and continuous media. Whereas in a discrete system, negative 
mass can serve as the analogue of the first fact, there is no analogue of the second fact, it is inherent 
only in a distributed system and is due to its non-linearity, and the sign of the effect is determined by 
the sign of ~/+ 1. Note that when ), = -1 the equations in Lagrangian coordinates are linear [7] and 
the waves propagate without distortion, exactly as in Euler coordinates, and hence the second fact 
mentioned above is not present in this case and a travelling wave with zero excess mass has no momentum 
[9]. 

It should be noted that to determine the momentum (2.6) the first approximation is insufficient, unlike 
the case of a wave occupying a finite region of three-dimensional space, and one also cannot use the 
constancy of the velocity potential outside the wave [8]. In the case of plane waves the velocity potentials 
in front of and behind the wave are different. 

3. I N T E R A C T I O N  OF A WAVE PACKET OF A R B I T R A R Y  F O R M  
AND R E F L E C T E D  F R O M  AN I M P E N E T R A B L E  WALL 

Suppose x = 0 corresponds to the wall and that the wave packet at the initial instant of time is situated 
in the region x0 < x < l + x0 and moves towards the wall. When Xo ~< cot ~< Xo + l the wave packet 
interacts with the wall and when xo + l <~ cot the reflected wave packet which is formed moves away. 
Since the wall is impenetrable we can write the condition j(0, t) = 0. 

To solve this boundary-value problem we will use a well-known method and consider the unbounded 
problem, which is symmetrical with respect to x = 0, in which 

j(x, t) = - j ( - x ,  t), p(x, t) = p(-x, t) 

while the initial valuesj0(x) and p0(x) are taken to be such that non-decaying wave packets are excited, 
situated symmetrically with respect to the wall and travelling towards it. We will write this solution of 
this problem in the form 
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P = Po{l + f (~ )+2[ f2 (~)]xCot+pglpO(~)  + f ( r l ) - 2 [ f Z o q ' ] x C o t +  

+ PgmP2°(n)+¼(3-Y)[L(n)F(~)+ L(~)F(rl)+ 2f(~)f(rl)]} (3.1) 

x 0 < ~ < l + x 0 ,  - l - x  o ~ < - x  o 

where Fz(z) = f (z) ,  ~(x, 0) are the initial data for the second approximation and j(0, t) = 0 by virtue 
of the fact that the functions f(x, t) and ~(x, 0) are even with respect to x = 0. 

The solutions forj(x, t) and p(x, t) can be treated in two ways: (1) as a description of the wave process 
of approaching wave packets when 0 ~< Cot ~< x0, when their domains do not overlap and hence the last 
terms containing the products of functions of ~ and ~ are zero, the interaction of wave packets when 
Xo <~ cot <~ l + Xo, when all terms of the solutions are non-zero, and finally, the diverging of wave packets 
when Xo ÷ t~  cot and the last terms of the solutions again vanish; (2) as a description of wave packets 
approaching the wall, when the wave packets are situated as a whole to the right of it when 0 ~ cot ~< 
x0, when only terms which depend on ~ need be taken into account, and the interaction of a wave packet 
with the wall when x0 ~< Cot ~< x0 + l (all terms with 0 < x are taken into account) and which moves 
away from the wall after a packet is reflected when l + x0 ~< Co t, when only terms which depend on rl 
need be taken into account. 

Substituting p(0, t) into (1.3), we obtain a value of the wave pressure on the wall at any instant of 
time and the overall interaction 

(xo+l)lc 0 

] p(O, t)dt = [2Po f ( -~0  t) + ep0 f 2  (Cot) + 2pO (Cot)]Co l 
x 0 / c 0 

We will now calculate the initial momentum of the wave packet when x > 0 

G(x,O) = I pocoT k3+ t 
go 

The momentum of the reflected packet G(x, tl) will have the same value but opposite sign forx0 + 
l < cot I and 0 < x, and G(x, q )  - G(x, 0) is identical with the overall action of the wave packet on the 
wall. In the case of a wave without a density excess its momentum and interaction with the wall depend 
on the length of the wave packet, the form of the initial perturbationf(x, 0) and the non-linear properties 
of the medium. When 1 + y > 0 the wave exerts pressure on the wall but when 1 + T < 0 the pressure 
on the wall is negative. 

4. THE E X C I T A T I O N  OF WAVES IN A GAS BY A M O V I N G  PI STON 

We will consider the motion of a gas both from the right and from the left from a piston which is situated 
at the origin of the system of coordinates when t = 0, where the piston velocity, like the gas velocity, 
is everywhere zero. Consequentlyj(x, 0) = 0 for all x. 

We will derive the boundary conditions by considering the problem for small vibration of the piston. 
The gas velocity v at the point s(t) where the piston is situated must be equal to its velocity 

v (s(t), t) = i(t)  ~- v "(0, t) + t~ "(0, t) + v x (0, t)s(t) 

Taking the relationj(x, t) = (P0 + p')(v" + v") into account we obtain 

j'(O, t) = pok(t); j"(O, t) = -Jx (0, t)s(t) + p'(O, t) i(t)  
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The equations of the first approximation, and the boundary and initial conditions are 

Pt + Jx = O, Jr' + c0~P~ = O, j'(O, t) : p0~(t), 0 < t < ** 

~(0) = O, j ' (x ,  0) = 0, p'(x, 0) = 0, - ** < x < +.o 

For the second approximation we have 

p;'+ j~ '= O, j ; '+  c2p~ " = - ~ [c02Po '(Y - l)p "2 + j'2poJ Ix 

j"(O, t) = p'(O, Oh(t ) -  Jx (0, t)s(t), j " (x ,  O) = 0 

The solution of the problem of the first approximation has the form 

Cop' -- O( x )p 6s, ( z_ ) - O(-x)p0s, (z+) 

.i" = O(X)poS, (z_) + e(-X)poS, (z+ ) 

z± = t + x l c  o 

where O(x) is the unit function and 0((3) = 1/2. 
The solution consists of two waves of the same kind starting from the point x = 0, propagating in 

opposite directions with the leading wave front of the wave travelling to the right (to the left) at the 
point x = c0t(--c0t). 

The equations of the second approximation for the wave travelling to the right have the form 

,, .,,_ . ,  2 ,, -eP0[s,2(z_)lx, 0 < x < Cot Pt + Jx - O, Jt + cOPx = 

For the wave travelling to the left, where -cot ~< x ~< O, we must replace Co by -co. 
The initial conditions arej"(x, O) = O, p"(x, O) = O. The boundary conditions, taking the solution of 

the first approximation into account, can be reduced to the form 

if(O, t) = P0co t [sO)s,(t)lt = Rt (t) 

The solution of the problem for the wave travelling to the right is 

p ' + p "  = PoC~t S , ( Z _ ) - 2  PoCo2[XS~ (Z_ )]x + coI Rt(z.. ) 

j '  + j "  = P0s, (z_) - ~ PoCo~X[S 2, (z_)]x + R, (z_) 

For the wave travelling to the left we must change the sign of c o . 
To the expressions for p', j '  we must add the solutions in the form of waves with amplitude which 

increases as x increases, proportional to y + 1, and waves determined by the piston motion in terms of 
the function Rt(t). Terms proportional tox lead to distortion of the wave profile, and it is these, together 
with first-order terms, that are responsible for the wave momentum. If the piston motion in terms of 
the function Rt(t ). Terms proportional tox lead to distortion of the wave profile, and it is these, together 
with first-order terms, that are responsible for the wave momentum. If the piston motion ceases at a 
certain time t = T, two wave packets are formed at this instant, which travel in opposite directions, 
When t > T their leading wave fronts are at distances of x = +__ cot, while the rear wave fronts are at 
distances o fx  = _ Co(t - 7"). 

We will calculate the momentum and mass excess of these packets for arbitrary motion s(t) of the 
piston under the following conditions 

We obtain 

s(O) = O, s( t  > T)  = s(T) ,  s,(O) = s , (T )  = 0 

x2 £ T 

G, = I U" + j ")ax = pocos ( r )+~po !  s,2(~)ax 
xi 

x2 

] (p" + p ' ~  = ± pos(T) 
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where xl = +c0(t - T),x2 = cot forx  > 0 andxl  = --cot, x2 = --c0(t- T) forx < 0. The upper (lower) 
sign corresponds to a packet which is situated atx > 0 (x < 0) and travels to the right (to the left). The 
momentum, in the first approximation, is determined by the resultant displacement s(T) of the piston. 
Here the gaseous medium, both on the right and on the left, obtains the same momentum in the direction 
in which the piston is displaced, despite the fact that the wave packets move in opposite directions. 
The density excess is also determined by the displacement s(T) of the piston, and has opposite signs 
for waves travelling in opposite directions. When s(T) > 0 a compression of the medium occurs on the 
right of the piston and a rarefaction on the left of it. 

The second term in the formulae for the momentum is due to terms of second-order infinitesimals. 
However, when s(T) = 0, i.e. when the piston ceases to move at the initial point, or when the time T 
is long, this part of the momentum becomes predominant. It is always directed in the direction of 
propagation of the wave packet if q( + 1 > 0 and in the opposite direction when 7 + 1 < 0. 

We will obtain the conditions for which the second term in the formula for the momentum is much 
greater than the first for a piston which vibrates as given by the following relation 

s(t) Ja(1-coscot), O<t<n~lo)= T 
= I s ( t )  = s ( T ) ,  T < t 

Here the total time of motion of the piston is equal to an integer number of half-periods of its vibration. 
The momenta of the wave packets for odd n are 

G± = 2Pocoa + 4 P°t°2a2 T 

and the required conditions can be reduced to the form n >> 8c0/(neac0). 
An estimate shows that, even for very high-power radiators, this relation has a large value and the 

first term can only be neglected for long wave trains When s(T) = 0 wave packets are generated 
without excess mass, but with a non-zero momentum. This is in complete agreement with the results 
obtained in Section 2 and is due to the change in the wave profile. The mass flow through an 
arbitrary cross-section x during the time between the arrival of wave packets tl and their completion t z 
is zero. 

The results of the solution of this problem are comparable with Earnshaw's solution [7]. 

5. TWO F I X E D  WALLS 

Consider the vibrations of a gas with the following boundary and initial conditions 

j(O,t)=j(l,t)=O, p(O,x):po+Poakcoskx, j(O,x)=O 

where sin k / =  0, ak ~ 1, co = co/k. We have 

P = Po + Po ak cos kx cos cot + I Poa2k 2 cos 2kx[(2 - e)(i - cos 2cot) - Etot sin 2tat] 

j=poafosinkxsinoat+Ipoa2kcosin2kx[(3e-21sin2fot+emtcos2fot I 
Here the average radiation pressure is 

I t°+x =Po+4Poa2Co2(l+Icos2fOtoCOS2kx) ~t  = p + p u 2 '  =-X ~ H(x,t)dt 

Here x is the averaging time, which is equal to an integer number of periods of the gas vibrations. 
As can be seen, the average radiation pressure has a constant component and a component that 

varies in space [7]. However, the latter depends on the origin to of the averaging process and is 
determined as a whole by the secular term of the solution p(x, t). This means that the dependence of 
the average pressure on x is due to the unsteady nature of the vibrations. Taking into account that t o 
is arbitrary, we can drop the last term in the expression for the average of I-I. We then obtain an 
expression for the radiation pressure which agrees with that obtained previously [9] without using the 
exact solution. 
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6. T W O  V I B R A T I N G  WALLS P R O D U C I N G  A T R A V E L L I N G  WAVE 

Suppose two impenetrable solid walls vibrate in synchronism, maintaining a constant distance l 
between them and producing a travelling wave. 

When lk = 2r~n the solutions have the form 

P = Po + Po ak sin(tot - kx) + 4 P°a2k2 [2(°t sin 2((or - kx) + cos  2(trot - kx)] 

j = poatO sin(oat - kx) + 2 p°a2to2kt sin 2((or - k.x) 

The vibration of the walls and the initial conditions have the form 

s I (t) = s 2 (t) = - a  cos  tot + I a2k[(4  + e)  s in 2tot - 2exit cos 2tat] 

p(x, 0)  = Po - Po ak sin kx + 4 p°a2k2 cos  2kx,  j(x, 0)  = -PoaO) sin k.x 

The solutions satisfy the relations 

/+.l I l+s I 
! p(x, t)dx = po t, I j(x, t)dx = 0 
Sl s I 

which denote that the mass of gas between the walls remains unchanged and that this gas has no 
momentum at any instant of time. 

When deriving the solutions we used the relations 

o( l+s  2, t ) = s  2, j = p v  

and the expressions for the approximations of s2 were obtained from the formulae 

p0h~ = j'(l,t), . , , _ . ,  • + j,, -1 ,., P0s2 - (JxS2 - P0 P J )x=l 

Similar expressions for Sl are obtained from these by making the replacement 1 ---> 0. This applies 
also to the problems considered below in Sections 7 and 8. The average value of the radiation pressure 
will be 

~ t  =~lX+t°~ i-ldt = Po + 2 Poa2to2[l _ 2 c o s  2(tolo _ kX)l 

As in the previous problem, the result of averaging depends on to. The additional pressure that 
arises due to excitation by a travelling wave is double that obtained in the case of a standing wave. 
This is explained by the fact that for a travelling wave the amplitude of the gas vibrations in each 
cross-section x is the same, whereas for a standing wave this amplitude is only reached an antinodes. 
In this case (Sections 5 and 6) the radiation pressure is not related to the gas momentum, which is always 
zero. 

7. V I B R A T I O N S  OF A GAS B E T W E E N  T W O  W A L L S - -  
F I X E D  AND S P R I N G - L O A D E D  

The boundary conditions on the fixed and moving walls have the form 

j(O, t)=O, p( l+s  2, t )=rs  2+po 

where s2 is the displacement of the right-hand wall and r is the stiffness of the spring. 
Here  steady vibrations are possible in the form of standing waves 

P = Po + Po ak coskx cos ta)t + 

+ 1_: Poa2k2 { (2 cos  2kx + ~,x sin 2kx) cos  2tot + (2 - E) cos 2kx} + p~ 
4 
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j=poacosinkxsinct~t+Ipoa2k~(2+2)sin2kx-eloccos2kx]sin2cot 

where 

• 2 t_2 

poco 2 + r/L _2 2_ 2 ) 
p ~ = - ' ~ ' p o  a x POC~ (14 r2 

poCo w + r 2 

~,  = Po +4Poa2O~2(l+ sin2kl~ rl 
2kl ) ~  

$2o=~a2k2 ~ l _ ( l + s i n 2 k l  ~ 
4 Poe6 + rl ~, 2kl J 

The parameters and the solutions satisfy the relations 

ctg kl =-r(poco¢O ) -I, kl ctg2 kl + 3 ctg kl + 3kl = O 
I+s 2 

S p(x, t)d~ : p0 l 
0 

The average values of the parameters for the limit values of the spring stiffness are of interest, namely, 

FI~-~0,  p~-->-4Poa2k2,  s2°->e--a2k214 as r-->O 

Poa2(O ", FI~---> po-->0,  S2o---~0 as r--~.o 

i.e. the radiation pressure in the case of a very high stiffness approaches the pressure which occurs when 
the gas vibrates in the form of standing waves with fixed walls, whereas for a very soft spring it approaches 
zero with a maximum increase in the volume due to s20 and a reduction in the density. 

8. A S T E A D Y  T R A V E L L I N G  WAVE 

A steady travelling wave occurs for certain vibrations of the left-hand wall and when the right-hand 
wall, which has mass, has an elastically damped fixing. The boundary condition at the right end has the 
form 

p(l + s2, t) = m~ 2 + h~ 2 + rs 2 + Po 

A travelling wave occurs when moo 2 = r, h = poco and can be written in the form 

p = po + poak sin(cot - kx) +2 Poa2k2 { ~2 4 cos 2(cot - loc) + 

1 ~ek(x-l'-~rPOCoO~]sin2(oJt-kx)-EPoC~+rlj 

j=PoaCOsin(O~t-kx)+Poa2kco{-cos2(cot-kx)+[-~(x-l)--~rPOCom]sin2(o~t-kx)} 

The left-hand wall vibrates with zero mean as given by the relation 

s, =-acoso~t+4a2k[~kl+ P°c0¢° ~]cos2o~t 
3r _] 
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while the right-hand wall vibrates as given by the relation 

s2 =_acos0~t+~rPoa2(02 _ . e 2,2, P0c~ cos2tJ0t+~a r ~ pocT+ r 1 

The average radiation pressure in this case is 

[+$2 
rl when ~ p(x, t)dx = p01 II(x, t) t = Po + p°a2t~2 poCo 2 + rl , ' l  

The average pressure is determined not only by the amplitude of the wave and the non-linearity but 
also by the stiffness r of the spring restraining the right-hand wall. We have 

, t  E _ 2 . 2  II~---~0, s20---} a2k2l, p o - - } - ~ P o a r  as r---}0 

II~--~ ~po a e _2..2W, s2o --> O, Po" "-} 0 as r--} .o 

Thus, the average pressure which occurs when there is a travelling wave is a maximum when r = oo 
and is equal to the pressure obtained in Section 6. 

9. THE SOUND ENERGY 

In [7] two expressions were derived for the sound energy density E. In the quadratic approximation 

p0 v ,2 c02p,2 c 2 
E2 = 2 + +y~-~-°I(P'+P") 

2Po 

E~A P°U'2 c2p'2 2 = ,,, + + Co (p,+p.) 

2 2P0 y 

The first of these expressions is the generally accepted one, while the second was proposed by Andreyev 
[6]. Note that when the volume V0 remains unchanged 

I (P" + p")av: o 
vo 

and hence, to calculate the total sound energy, we can assume the density: as given by the first two similar 
terms of these expressions. However, in general (in the case of varying surfaces or when calculating 
the energy in part of the volume) one cannot use a truncated expression for the density. One can use 
the solutions obtained to solve the problem in favour of one or other definition of E. The difference 
is considerable and is found even in the first order. This considerably simplifies the problem. 

The potential energy density is given by the following expression [7, 8] 

p u :  pY = pQc  +P'C° 2 
~ ( y -  t) po ~-~ y(~,- l) ~'- 

where u is the potential energy per unit mass and the second term of this expression is usually employed 
as a linear correction to the density of the unperturbed medium when it vibrates. However, the change 
in volume is ignored here. In the first approximation we write the energy of the mass of gas in a small 
volume V0 before and V0 + 11 after the perturbation so that we can assume the quantity (pu)" to be 
unchanged within this volume. We have 

J [pouo + (pu)']dV = pouo(Vo + v ' )+  (pu)'V0 
Vo+V" 

Subtracting the energy of the unperturbed medium and dividing by the volume we obtain the sound 
energy density in the first approximation as obtained by Andreyev 
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v '  p "c~ 
EiA = P0Uo ~ + (pu)" : 

v0 Y 

Here we have used the relation pV = const, which indicates that the mass of the part of the medium 
considered remains unchanged. 

An expression for the sound energy density was derived in the general case in [6]. 
As an example consider the problem from Section 4 with the solution 

p" = PoCol St ( t -  X / Co) 

In this problem all the energy of the wave travelling to the right is determined in the first approximation 
by the work done by the pressure forcesp0 on the wall and its displacement s(T) and is equal top0s(T) 
= c2opos(T)/7, where T is the time the piston stops. On the other hand, this energy can be obtained by 
integrating with respect to x the energy density of the wave formed. Taking the energy density as given 
by Andreyev, we have 

cot 2 
c°t ~ P  = PoC° S s t l t - X l d x =  poC" s(T) (T<t)  
o Y o ~, Co ) Y 

Agreement between the results of calculations of the energy is confirmed by the correctness of the 
expression for the energy density as given by Andreyev. 

The case when there is no mass flux (jr = 0) is of interest. This occurs in the problem from Section 
4 when g/= 0. We will take, for example, the solution for a wave travelling to the right and calculate 
the time-average density using the standard formula 

This result is inapplicable from the physical point of view since for 1 < T < 5/3, i.e. for the majority of 
gases, the energy in the sound field is less than the energy in the unperturbed medium, which leads to 
instability. Attention has already been drawn to this result in [7, 10], but another treatment of the 
reason for its occurrence is given. If we take the energy density as derived by Andreyev, calculation 
gives 

3y - 1 
= 4 , t  > 0  

for all gases. 

10. THE AVERAGE QUANTITIES 

We are usually most interested in time-averaged quantities rather than in the instantaneous values 
of the quantities representing the wave or vibration processes. The time and space averages are often 
identical but, for example, this is not so in the case waves with varying profile. To answer the question 
of which averages should be used, we will consider the equation which relates the energy density and 
its flux q 

g~+qx=O 

x2 t2 

S [E(x, t 2 ) -  E(x, tj )]dx + S [q(x2, t) - q(x l, t)]dt = 0 
Xl tl 

Consider the case when a wave perturbation propagates from left to right so that its leading wave 
front when t = tl is in the section xl, and when t = t2 it is in the section xz. Then 

x2 t2 
[ E(x, t2)dx= I q(x,, t)at (x 2 -xt)ff~ x =(t 2 - t l )~  t 

Xl tl 

and, taking into account the equationx2 -x l  = c0(t2 - tl), we obtain colololoF x = q-~. Hence, the widely used 
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formula Co Ex  = [t t is unsuitable for waves with varying profile, and to calculate the energy in a specified 
volume one must use its spatial density or its t ime-average flux through a specified surface. This also 
applies to the equations 

p ,+j~ =0 ,  j, +1-1~ = 0 

_where, when calculating the mass and the mass flux (the first equation) one must use the averages 15 x, 
j t ,  a_nd when calculating the m om en t um  and the radiation pressure (the second equation) one must 
usejX, ~t .  

We will give a formula  which expresses the radiation pressure in terms of the kinetic energy density 
for a fixed distance between the walls (Sections 5 and 6) and in the case of spring-loaded walls (Sections 
7 and 8) 

In the case of the problems from Sections 7 and 8, the right-hand side of  the equation must be 
supplemented with the factor rl/(rl + p0c2). Note that the radiation pressure depends very much on the 
stiffness r of  the spring. 

11. C O N C L U S I O N  

The presence of momentum in an isolated wave is determined by the initial conditions. A wave without 
an excess or a deficiency of density has momen tum in the same direction as its motion when ~, + 1 > 
0, and an indication of the presence of m omen tum in this case is the change in its profile. The mass 
transfer is a necessary consequence of the passage through the medium of a wave having momentum.  

One must distinguish the reasons for the occurrence of an average radiation pressure on a reflecting 
obstacle in the case of an isolated wave and in the case of a closed volume, filled with a vibrating medium. 
In the first case the pressure is due to the presence of momen tum in the wave, while in the second it 
is due to the tendency of the medium to expand when vibrations occur (in the form of standing or 
travelling waves) due to the non-linearity of the equations and the medium. The quantity y + 1 is a 
measure of the non-linearity. The  average pressure on the wall of a dosed  volume depends very much 
on the forces restraining these walls. 
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